
Reference
Application Integrator for CICS
Version 3.0

n new

29-9

the

erver,
catio

s,
n
prise
ork
n
ase,

upport,
it,

erAMC,
ipt,
erWare

or, S
 SQL
, SQL
L

inancial
orkbench,
ream,

e
roup

s.
Document ID: 33123-01-0300-01

Last revised: February 1999

Copyright © 1989-1999 by Sybase, Inc. All rights reserved.

This publication pertains to Sybase database management software and to any subsequent release until otherwise indicated i
editions or technical notes. Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.

To order additional documents, U.S. and Canadian customers should call Customer Fulfillment at (800) 685-8225, fax (617) 2845.

Customers in other countries with a U.S. license agreement may contact Customer Fulfillment via the above fax number. All or
international customers should contact their Sybase subsidiary or local distributor. Upgrades are provided only at regularly scheduled
software release dates. No part of this publication may be reproduced, transmitted, or translated in any form or by any means, electronic,
mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Sybase, the Sybase logo, ADA Workbench, Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive S
Adaptive Server Anywhere, Adaptive Server Enterprise, Adaptive Server Enterprise Monitor, Adaptive Server Enterprise Replin,
Adaptive Server Everywhere, Adaptive Server IQ, Adaptive Warehouse, AnswerBase, Anywhere Studio, Application Manager,
AppModeler, APT Workbench, APT-Build, APT-Edit, APT-Execute, APT-FORMS, APT-Translator, APT-Library, Backup Server,
ClearConnect, Client-Library, Client Services, Data Pipeline, Data Workbench, DataArchitect, Database Analyzer, DataExpres
DataServer, DataWindow, DB-Library, dbQueue, Developers Workbench, Direct Connect Anywhere, DirectConnect, Distributio
Director, E-Anywhere, E-Whatever, Embedded SQL, EMS, Enterprise Application Server, Enterprise Application Studio, Enter
Client/Server, Enterprise Connect, Enterprise Data Studio, Enterprise Manager, Enterprise SQL Server Manager, Enterprise W
Architecture, Enterprise Work Designer, Enterprise Work Modeler, EWA, Gateway Manager, ImpactNow, InfoMaker, Informatio
Anywhere, Information Everywhere, InformationConnect, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeB
MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database Gateway, media.splash, MetaWorks, MyS
Net-Gateway, Net-Library, NetImpact, ObjectConnect, ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolk
Open Client, Open ClientConnect, Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open
ServerConnect, Open Solutions, Optima++, PB-Gen, PC APT Execute, PC DB-Net, PC Net Library, Power++, power.stop, Pow
PowerBuilder, PowerBuilder Foundation Class Library, PowerDesigner, PowerDimensions, PowerDynamo, PowerJ, PowerScr
PowerSite, PowerSocket, Powersoft, PowerStage, PowerStudio, PowerTips, Powersoft Portfolio, Powersoft Professional, Pow
Desktop, PowerWare Enterprise, ProcessAnalyst, Report Workbench, Report-Execute, Replication Agent, Replication Driver,
Replication Server, Replication Server Manager, Replication Toolkit, Resource Manager, RW-DisplayLib, RW-Library, S Design-
Designor, SDF, Secure SQL Server, Secure SQL Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script,
Advantage, SQL Anywhere, SQL Anywhere Studio, SQL Code Checker, SQL Debug, SQL Edit, SQL Edit/TPU, SQL Everywhere
Modeler, SQL Remote, SQL Server, SQL Server Manager, SQL SMART, SQL Toolset, SQL Server/CFT, SQL Server/DBM, SQ
Server SNMP SubAgent, SQL Station, SQLJ, STEP, SupportNow, Sybase Central, Sybase Client/Server Interfaces, Sybase F
Server, Sybase Gateways, Sybase MPP, Sybase SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase User W
SybaseWare, Syber Financial, SyberAssist, SyBooks, System 10, System 11, System XI (logo), SystemTools, Tabular Data St
Transact-SQL, Translation Toolkit, UNIBOM, Unilib, Uninull, Unisep, Unistring, URK Runtime Kit for UniCode, Viewer, Visual
Components, VisualSpeller, VisualWriter, VQL, WarehouseArchitect, Warehouse Control Center, Warehouse Studio, Warehous
WORKS, Watcom, Watcom SQL, Watcom SQL Server, Web Deployment Kit, Web.PB, Web.SQL, WebSights, WebViewer, WorkG
SQL Server, XA-Library, XA-Server and XP Server are trademarks of Sybase, Inc. 9/99

Unicode and the Unicode Logo are registered trademarks of Unicode, Inc.

All other company and product names used herein may be trademarks or registered trademarks of their respective companie

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii) of DFARS 52.227-
7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Contents
About This Book .. 5

CHAPTER 1 Understanding Application Integrator .. 11
What Is AI for CICS?.. 12

A Description of AI for CICS.. 12
AI for CICS Architecture .. 12

Why Use AI for CICS? ... 14
Problem ... 14
Solution ... 14

Jaguar and AI for CICS Functionality ... 15
How Jaguar Works .. 15
When Jaguar Uses AI for CICS Components 16

Basic Steps to Building a Web Application..................................... 18
Step 1: Prepare the COMMAREA Definition 19
Step 2: Create the Component.. 19
Step 3: Deploy the Component ... 19
Step 4: Use the Component .. 20

Using the AI for CICS Tutorial .. 21

CHAPTER 2 Getting Ready to Use AI for CICS.. 23
Selecting a CICS Program ... 24

CICS Program Requirements.. 24
Data Definition Restrictions ... 24
If Your CICS Program Does Not Meet All Criteria 24

Understanding COMMAREAs.. 26
Defining the COMMAREA ... 26
How CICS Programs Use the COMMAREA 27
How AI for CICS Components Map from the COMMAREA 28
Making the COMMAREA Available to AI for CICS.................. 28

AI for CICS Data Definition Worksheet .. 31

CHAPTER 3 Working with the AI Component Builder 33
Working with the Component Builder ... 34
iii

Contents
Starting the Component Builder .. 34
Working with Project Files ... 34

Understanding AI Connections .. 37
Determining Connectivity .. 37
Connection Properties... 38
Testing Connections.. 39
Connection Caching .. 39
Connections and Deployed Components................................ 40

Understanding AI Components .. 41
Component Properties .. 41
Method Properties ... 42
Viewing Method Information.. 43

Supported Datatypes ... 44
COBOL FILLER and Group Level Items 44
COBOL Datatype Support... 44
Additional Datatype Information .. 45

Understanding AI Component Deployment.................................... 48
Understanding the Deployment Wizard................................... 48
Understanding Deployed Components in Jaguar.................... 49
Understanding Deployed Connections in Jaguar 50

Mapping CICS Components to AI Components............................. 52
Target CICS Programs and Method Names 52
Result Sets and Method Return Value 52
Parameter Information... 53
An Illustration of CICS Program-to-Component Mapping 53

CHAPTER 4 Jaguar and Application Issues... 57
AI Components in Jaguar... 58

Instance Creation .. 58
Instance Activation .. 58
Method Invocation ... 59
Instance Deactivation .. 59
Instance Destruction.. 59

Connections and Connection Caching... 60
Component Properties: Connections and Security 60
Acquiring and Disposing of Connections................................. 61
Defining Connection Caches in Jaguar Manager.................... 62
AI Component Properties in Jaguar Components................... 63

Client Application Development ... 65
Glossary 67
iv

tor
) as

ate
About This Book

Application Integrator is a Jaguar component development and
deployment tool that allows application developers to quickly integrate
legacy applications and transactions with Jaguar CTS.

This preface contains the following topics:

• Audience

• How to Use This Book

• Documentation

• Conventions

• If You Need Help

• If You Have Questions About This Book

Note The remaining chapters in this guide refer to Application Integra
as “AI for CICS,” and to Jaguar Component Transaction Server (CTS
“Jaguar.”

Audience
Use this document if you are responsible for using AI for CICS to cre
components from COBOL COMMAREAs and then deploy them into
Jaguar.

How to Use This Book
The following table describes the contents of this book.
5

ed
Table 1: Application Integrator for CICS Reference contents

Documentation
Sybase provides the following AI for CICS documentation:

• Application Integrator for CICS Reference

• Application Integrator for CICS online help

See the online documentation in the Sybase\Application Integrator 3.5
program group for Application Integrator samples, which include tutorials
designed to give you hands-on experience with each step of creating and
deploying components.

Related Documentation
This section lists documentation for the following products that can be us
with AI for CICS:

• EAStudio

• EAServer

• Jaguar CTS

• Open ServerConnect

• DirectConnect for MVS

Chapter Contents

Chapter 1, “Understanding
Application Integrator for
CICS”

Provides an overview of the functionality and
features of Application Integrator.

Chapter 2, “Getting Ready
to Use AI for CICS”

Describes the COMMAREA or data definition
file that Application Integrator will use to create
a component.

Chapter 3, “Working with
the AI Component Builder”

Describes how to work with the AI for CICS
Component Builder to create and deploy
components.

Chapter 4, “Jaguar and
Application Issues”

Describes guidelines for using Application
Integrator components in Jaguar CTS.

Glossary Defines technical terms used in this book.
6

t
EAStudio

Building Internet and Enterprise Applications provides information about
using Application Integrator and other EAStudio applications.

The Enterprise Application Studio Installation Guide describes how to install
Application Integrator on the workstation and the mainframe.

EAServer

The Enterprise Application Server version 3.0 Feature Guide provides
information about using Application Integrator and other EAServer
applications.

Jaguar CTS

The Jaguar CTS Programmer’s Guide is available with Jaguar CTS version
3.0.

Open ServerConnect

For LAN-to-mainframe communications without gateway software, you will
use an Open ServerConnect application that is included with AI for CICS. The
following relevant documentation is available with Open ServerConnect
version 4.0:

• Open ServerConnect Installation and Administration Guide for IBM
CICS/MVS

• Open ClientConnect and Open ServerConnect Messages and Codes

• Release Bulletin Open ServerConnect version 4.0 for IBM CICS/MVS

DirectConnect for MVS

For LAN-to-mainframe communications using gateway software, you mus
use DirectConnect for MVS. The following relevant documentation is
available with DirectConnect for MVS version 11.07:

• DirectConnect Server Administration Guide

• DirectConnect for MVS Connectivity Guide

• DirectConnect for MVS Installation Guide

• DirectConnect Transaction Router Service User’s Guide
7

• MainframeConnect for DB2/MVS-CICS Installation and Administration
Guide

• Release Bulletin for DirectConnect for MVS version 11.07 for AIX,
 HP-UX, Solaris, and Windows NT

Conventions
This section describes the following:

• Style Conventions

• Syntax Conventions

Style Conventions
The following table shows some of the style conventions used in the
documentation for this product.

Table 2: Style conventions

Item Example

• Programs

• Utilities

• Procedures

• Commands

create connection

• File names

• Directory names

• Properties

install.cfg

• Code examples

• Screen text

01 DFHCOMMAREA

• User input

• Command line input

shutdown

Variables (text that you replace with the
appropriate value)

host_name
8

Syntax Conventions
The following example illustrates some of the syntax conventions used in this
guide:

COMMAND [object_name, [{TRUE | FALSE}]]

The following table explains the syntax conventions used in this guide.

Table 3: Syntax conventions

Symbo
l Explanation Example

() Include parentheses as part of the
command.

START DATABASE
(database_name)

| A vertical bar indicates that you can
select only one of the options
shown. Do not type the bar in your
command.

{yes|no}

, A comma indicates that you can
choose one or more of the options
shown. Separate each choice by
using a comma as part of the
command.

{long,short,none}

{ } Braces indicate that you must
choose one or more of the enclosed
options. Do not type the braces
when you enter the option.

Select only one:

{datetime|datetime
4}

Select at least one:

{char_iso,char_eur
,
 char_jis}

[] Brackets indicate that you can
choose one or more of the enclosed
options, or none. Do not type the
brackets when you enter the
options.

[truncate]

... An ellipsis indicates that you can
repeat the previous item as many
times as necessary.

{datax,datay}...
9

s

ems
If You Need Help
Each Sybase installation that has purchased a support contract has one or more
designated people who are authorized to contact Sybase Technical Support. If
you cannot resolve a problem using the manuals or online help, please have the
designated person contact Sybase Technical Support or the Sybase subsidiary
in your area.

Sybase Professional Services
Sybase Professional Services offers on-site consulting and training programs
to help you maximize the benefits of our products. For more information, call
(800) 8SYBASE.

Note Outside the continental United States and Canada, obtain the correct
telephone numbers from your sales representative and record them for future
reference.

If You Have Questions About This Book
If you have questions, comments, or suggestions about this book, contact the
Sybase documentation group directly by e-mail at:

icd_doc@sybase.com

Feel free to forward any information, comments, or questions about the
following:

• Missing, incorrect, or unclear information

• Information you found particularly useful

• Organization or style

We will respond as promptly as possible by e-mail. Your feedback helps u
provide more accurate, detailed, and easy-to-use documentation.

Note Please send comments about product features, functionality, or probl
to your systems engineer or Sybase Technical Support.
10

tor
) as
C H A P T E R 1 Understanding Application
Integrator

This chapter describes the functionality and architecture of Application
Integrator, and includes the following topics:

• What Is AI for CICS?

• Why Use AI for CICS?

• Jaguar and AI for CICS Functionality

• Basic Steps to Building a Web Application

• Using the AI for CICS Tutorial

Note The remaining chapters in this guide refer to Application Integra
as “AI for CICS” and to Jaguar Component Transaction Server (CTS
“Jaguar.”
11

What Is AI for CICS?

uar.

ata.

ts:

ents

ct its

n
What Is AI for CICS?
AI for CICS is a Jaguar component development and deployment tool that
allows application developers to quickly integrate legacy applications and
transactions with Jaguar.

AI for CICS is included in Sybase EAServer, an integrated set of application
servers you can use to deploy Web applications that support high-volume
traffic, dynamic content, and intensive online transaction processing.
EAServer consists of PowerDynamo, Jaguar, AI for CICS, AI for Stored
Procedures, and Adaptive Server Anywhere (ASA).

This section covers the following topics:

• A Description of AI for CICS

• AI for CICS Architecture

A Description of AI for CICS
Using its Component Builder design tool, AI for CICS allows you to create
components that are proxies (front-ends) for CICS programs written in
COBOL, making them accessible to Internet or Intranet clients. These
components, which represent the COBOL programs, are deployed in Jag
The end result is a LAN- or Web-based application that gives the user full
access to existing CICS programs that can read and/or write mainframe d

AI for CICS exposes mainframe business logic through two types of objec

• A component: a self-contained, reusable, piece of software that repres
business logic of the CICS program

• A connection: a specification of a path that a component uses to conta
source program

AI for CICS can run in a gateway-less environment or in a gateway
environment using DirectConnect for MVS and DirectConnect Transactio
Router Service (TRS).

AI for CICS Architecture
AI for CICS architecture consists of the following:
12

CHAPTER 1 Understanding Application Integrator

UI)

e

n

nt

uar,
you
m
way
• The Component Builder, the design-time Graphical User Interface (G
portion of AI for CICS, which allows the user to perform these tasks:

• Import data definition information that defines the component

• Create a connection and a component

• Deploy the component to produce Java source code

• A library of Java classes that components use to access the mainfram

• The AI for CICS mainframe run time that invokes COBOL programs o
behalf of AI for CICS components

Figure 1-1 shows the design-time architecture of AI for CICS.

Figure 1-1: AI for CICS design-time architecture

During design time, the Component Builder imports the COMMAREA from
the CICS program (in this example, from a copybook), then deploys the
component with its definitions into Jaguar, where it will be used by the clie
application.

Figure 1-2 shows the run-time architecture of AI for CICS.

Figure 1-2: AI for CICS run-time architecture

During run time, a client application attempts to invoke a component in Jag
which in turn accesses the CICS program on the mainframe. Note that if
are using SNA connectivity protocol, you need to provide connectivity fro
the Jaguar machine through DirectConnect TRS to CICS; this is the gate
option for connectivity.
13

Why Use AI for CICS?

te

oad
led”

hem

s and
r for
Why Use AI for CICS?
To understand how AI for CICS can provide solutions for business problems,
consider the following scenario.

Problem
A company needs to attract new prospects and keep them as customers, and at
the same time, lower the cost of sales.

The company wants to allow customers to self-service their accounts through
a new application over the Internet. Therefore, the customer can easily renew
an account, and by deploying the application over the Internet, the company
can expand its target market without increasing its direct sales force.

However, the company faces the following constraints:

• Existing operational systems were not designed for direct exposure to
customers over the Internet.

• The company cannot afford to rewrite all the applications or consolida
all the data on a common platform. The business logic and security
infrastructure is spread across LAN database stored procedures,
mainframe CICS applications, and C++ DLLs.

• The new application must be developed using HTML and Java (for br
Internet accessibility), but none of the existing systems are “Web-enab
today.

Solution
For its solution, the company uses Sybase Enterprise Application Server
(EAServer) as a platform to integrate their internal applications and make t
accessible through the Internet. Using AI for CICS and AI for Stored
Procedures, they can access business logic in their mainframe application
database stored procedures quickly and easily from the Jaguar middle tie
new application development.
14

CHAPTER 1 Understanding Application Integrator

1-
 or

 the

by
 that

the

rs as

est to

 the
Jaguar and AI for CICS Functionality
The following sections describe how Jaguar functions and how it relates to AI
for CICS:

• How Jaguar Works

• When Jaguar Uses AI for CICS Components

How Jaguar Works
Jaguar implements a “multi-tier” distributed computing architecture. Figure
3 shows the typical Jaguar environment, in which three distinct elements,
tiers, work together to allow users to access data:

• The client, which contains the applet or application code that manages
presentation and interaction with the end user.

• Middle-tier components, which run in Jaguar and are typically coded
the middle-tier developer. They contain the executable business logic
handles much of the application processing.

• The back-end database, which is the transaction target accessed by
Jaguar component. It stores, manages, and processes data.

Figure 1-3: Typical Jaguar environment

In most cases, interaction between the client application and Jaguar occu
follows:

1 When a client application needs to use a component, it issues a requ
the Jaguar server.

2 The request from the client environment prompts Jaguar to instantiate
component.
15

Jaguar and AI for CICS Functionality

 the

e

rs as

ed

ions
e,

e
3 The client application invokes a method on a component. The method
executes, accesses a database, and possibly returns data to the client.

Note For detailed information about how Jaguar works, see the Jaguar
documentation.

When Jaguar Uses AI for CICS Components
When Jaguar uses AI for CICS components, the components in the middle tier
are “proxies” that represent the CICS application program. The Jaguar
environment is composed of the following elements, or tiers:

• The client, which contains the applet or application code that manages
presentation and interaction with the end user.

• Middle-tier AI for CICS components, which provide direct access to th
CICS application program. No middle-tier coding is required.

• The CICS program, which contains business logic for an application.

Figure 1-4 shows the Jaguar client communicating with a CICS program
through the AI for CICS component in the middle tier.

Figure 1-4: Jaguar environment with AI for CICS

In most cases, interaction between the client application and Jaguar occu
follows:

1 The Jaguar client application requests the component to be instantiat
one of two ways.

• If the Jaguar client is an applet, users can find and launch applicat
from traditional HTML pages. Instead of simply loading a static pag
Jaguar downloads an executable applet to the user's browser.

• If the Jaguar client is an installed application, users can launch th
application from their machines.

2 Jaguar instantiates the component.
16

CHAPTER 1 Understanding Application Integrator
3 The client calls a method in the component.

4 The AI for CICS component invokes the CICS program and returns any
result sets to the client application.
17

Basic Steps to Building a Web Application

task
Basic Steps to Building a Web Application
Following are the basic steps required to build a Web- or Internet-based
application:

• Step 1: Prepare the COMMAREA Definition

• Step 2: Create the Component

• Step 3: Deploy the Component

• Step 4: Use the Component

Figure 1-5 shows the process flow by task, the environment in which each
is performed, and the skills needed to perform the tasks in each step.

Figure 1-5: Four-step process flow and required skills
18

CHAPTER 1 Understanding Application Integrator

ingle

hods

uar,
nent
The following sections describe each step.

Step 1: Prepare the COMMAREA Definition
You must research the CICS program you plan to use so you are familiar with
how it is defined and how it works.

The COMMAREA contains data definitions of input and output for CICS
programs that AI for CICS components will call. You can find the
COMMAREA for a CICS program in copybooks, in separate files, or in main
code.

For more information about how to prepare the COMMAREA for importing,
see Chapter 2, “Getting Ready to Use AI for CICS.”

Step 2: Create the Component
In this step, you use the Component Builder to create a connection and a
component. The connection provides access to a CICS program. The
component contains a collection of methods, and each method invokes a s
CICS program.

After you have created the component, the Component Builder adds met
by importing the COMMAREA definitions.

Step 3: Deploy the Component
When you deploy the component, the Component Builder defines it in Jag
and creates Java classes that implement the component. After the compo
is deployed, it is ready to run.
19

Basic Steps to Building a Web Application
Step 4: Use the Component
Once a component is deployed, you can use it in applications. AI for CICS
components may be used to build Jaguar client applications, or to build other
Jaguar components.

Note For information about how to build your client application, see the
Jaguar documentation.
20

CHAPTER 1 Understanding Application Integrator
Using the AI for CICS Tutorial
Sybase provides tutorials to give you hands-on experience and guide you
through each detailed step of the process just described.

Tutorials are installed with AI for CICS. See the online documentation in the
Sybase\Application Integrator 3.0 program group for information on running
the AI for CICS tutorial.
21

Using the AI for CICS Tutorial
22

C H A P T E R 2 Getting Ready to Use AI for CICS

This chapter describes how to determine whether AI for CICS can uses a
CICS program directly. It also describes the COMMAREA data definition
that AI for CICS uses to create a component and provides a worksheet for
gathering the information that AI for CICS requests.

The following topics are covered in this section:

• Selecting a CICS Program

• Understanding COMMAREAs

• AI for CICS Data Definition Worksheet

Note The information in this chapter is primarily for use by the CICS
developer.
23

Selecting a CICS Program

all
Selecting a CICS Program
Before you use AI for CICS, be sure that the CICS program you plan to use in
the component meets the criteria listed in this section

This section covers the following topics:

• CICS Program Requirements

• Data Definition Restrictions

• If Your CICS Program Does Not Meet All Criteria

CICS Program Requirements
Following are requirements for the CICS program that you select:

• The program can be called using a CICS Link call.

• The program does not perform any 3270 screen or printer I/O directly
through an LU.

• The program has a communications area (COMMAREA).

• All input and output data is handled in the communications area.

Data Definition Restrictions
Following are restrictions for the data definition file (COMMAREA):

• It cannot contain nested OCCURS clauses.

• It cannot have a variable length OCCURS clause, unless it is the last
definition in the COMMAREA.

• It cannot contain a REDEFINES clause.

If Your CICS Program Does Not Meet All Criteria
If the CICS programs you want to integrate with AI for CICS do not meet
of the previous criteria, you can:

• Modify an existing CICS program.
24

CHAPTER 2 Getting Ready to Use AI for CICS

ure.
• Write an Open ServerConnect application and call it as a stored proced
(For more information, see the Application Integrator for Stored
Procedures Reference.)

• Write a CICS program that meets the criteria.
25

Understanding COMMAREAs

arate
 they

ta
Understanding COMMAREAs
This section covers the following topics:

• Defining the COMMAREA

• How CICS Programs Use the COMMAREA

• How AI for CICS Components Map from the COMMAREA

• Making the COMMAREA Available to AI for CICS

Defining the COMMAREA
Modern CICS programs store presentation logic and business logic in sep
programs. When the two programs need to communicate with each other,
must pass data back and forth in a COMMAREA, which is a block of
contiguous memory.

Because the CICS programs must agree on the format and use of the da
definitions in the COMMAREA, this area is usually mapped by a single
COBOL data definition that is included in both participating programs.

The COMMAREA (data definition file) can be stored as follows:

• Embedded in CICS program source code

• In a copybook member that is copied in at compile time

• In a separate file, copied from the source code

Note See 28 for more information about how to import the COMMAREA
from each of these stored locations.

Files imported into the AI for CICS Component Builder must contain a
COMMAREA for the CICS program you want and nothing else, as shown in
the following example:

01 DFHCOMMAREA.
 02 CA-RETCODE PIC 9(8) COMP.
 02 CA-SWSECI1-COMMAREA.
 05 CA-NUMBER-OF-ROWS PIC 9(4) COMP.
 05 CA-ERROR-MESSAGE PIC X(10).
 05 CA-CURRENT-DATE PIC X(8).
 05 CA-CURRENT-TIME PIC X(8).
 05 CA-CICS-ABSTIME PIC S9(15) COMP-3.
26

CHAPTER 2 Getting Ready to Use AI for CICS

lly
ing

 the

ing
 05 CA-ROW-DATA OCCURS 1 TO 1818 TIMES
 DEPENDING ON CA-NUMBER-OF-ROWS.
 10 CA-ROW-NUMBER PIC S9(4) COMP.
 10 CA-ROW-NUM-AS-CHAR PIC X(6).
 10 CA-DATA PIC X(10).

Note When you move a COMMAREA to the workstation, be sure you remove
all REDEFINES clauses and field declarations following REDEFINES clauses.

How CICS Programs Use the COMMAREA
To communicate input and output information, the “calling” program typica
sets input fields in the COMMAREA and calls another CICS program, pass
the COMMAREA to it. The “called” program then puts the results of this
operation back into fields in the COMMAREA and returns execution to the
calling program. This makes the output for the called program available to
calling program through the COMMAREA.

Figure 2-1 shows this process: PROGA (the presentation logic) invokes
PROGB (the business logic) and passes the COMMAREA to it, thus defin
the input and output definitions that they will share.

Figure 2-1: CICS programs using the COMMAREA
27

Understanding COMMAREAs

are
How AI for CICS Components Map from the COMMAREA
The following figure shows how AI for CICS maps the data definitions from
the COMMAREA.

Figure 2-2: How AI for CICS maps from the COMMAREA

Following are the basic steps in this process:

1 When you build an AI for CICS component, AI for CICS parses the
COMMAREA in the copybook and stores the data definitions.

2 When you generate the component, AI for CICS creates a Jaguar
component and maps the COMMAREA for PROGB business logic into
structured parameters that the Jaguar component can understand.

3 When the method in the Jaguar component calls the CICS program, the
structured parameters are mapped to the CICS fields, as shown in the
invoke call. This presents a “component-like” interface to client
applications.

Making the COMMAREA Available to AI for CICS
This section describes how to make data definitions in the COMMAREA
available on the workstation so that AI for CICS can use them. Following
descriptions based on how you import the COMMAREA:

• From COBOL Source Code

• From a Copybook Member

• From a Separate File
28

CHAPTER 2 Getting Ready to Use AI for CICS
From COBOL Source Code

If the COMMAREA is embedded in source code, follow these steps to make it
available to AI for CICS:

1 Cut and paste the source code portions of data definitions into a file.

2 Use FTP, a screen capture, IND$FILE, or a similar utility to copy the file
and move it to the workstation where AI for CICS is installed.

If necessary, be sure that the transferred files receive EBCDIC-to-ASCII
translation so they are readable characters on the workstation.

3 Record the name of the copied file for future reference.

From a Copybook Member

In mainframe applications, many sections of program code are common to
multiple programs, such as file layouts, communication area layouts, common
data definitions, and file descriptions. Most compilers are able to include code
fragments from a library at compile time.

In COBOL, libraries of these code fragments are called copybooks, and the
individual members within them are called copybook members.

Follow these steps to make the copybook member available to AI for CICS:

1 Find the source code of the program you want to make available as a
component.

Note If your site uses code management utilities such as CA-LIBRARIAN
or PANVALET, contact your mainframe systems administrator for
information on locating copybooks in your environment.

2 Find the COPY statements that look like this:

COPY abcd

3 Locate the relevant members in your copybook library. If you are not sure
which copybooks to use, look at the SYSLIB DDNAME in the JCL used
to compile the program. One or more of the data sets allocated to this
DDNAME will be the copybook for this compilation.

4 Find the member in the copybooks that describes the COMMAREA for
the CICS program you will use to build a component. This is the copybook
member you import into AI for CICS.
29

Understanding COMMAREAs
5 Using FTP, a screen capture, IND$FILE, or a similar utility, copy the
copybook member and move it to the workstation where AI for CICS is
installed.

If necessary, be sure that the transferred files receive EBCDIC-to-ASCII
translation so they are readable characters on the workstation.

6 Record the CICS program name, copybook name, and copybook member
names for future reference.

Note If the copybook member contains more than the COMMAREA
definitions, edit the downloaded file so that it contains only the COMMAREA.

From a Separate File

Follow these steps to make the COMMAREA available to AI for CICS:

1 Using FTP, a screen capture, IND$FILE, or a similar utility, copy the file.

If necessary, be sure that the transferred file receives EBCDIC-to-ASCII
translation so it is displayed as readable characters on the workstation.

2 Move it to the workstation where AI for CICS is installed.

3 Record the filename for future reference.

Note If the file contains more than the COMMAREA definitions, edit the
downloaded file so that it contains only the COMMAREA.
30

CHAPTER 2 Getting Ready to Use AI for CICS
AI for CICS Data Definition Worksheet
Record the following information for each COMMAREA data definition.

Table 2-1: AI for CICS worksheet for each method

Information needed Record information here

CICS program name

(for example, SWSECI1)

Copybook library or PDS name

(for example,
COBOL.COPYLIB.COB)

Copybook member name

(for example, FILE02)

PC filename and location for the
COMMAREA

(for example,
C:\AICICS\SWECI1.COB)
31

AI for CICS Data Definition Worksheet
32

re.
e
nline
p
C H A P T E R 3 Working with the AI Component
Builder

This chapter contains information about using the AI for CICS
Component Builder, including the following topics:

• Working with the Component Builder

• Understanding AI Connections

• Understanding AI Components

• Supported Datatypes

• Understanding AI Component Deployment

• Mapping CICS Components to AI Components

Note Sybase provides samples with the Application Integrator softwa
 These samples include tutorials designed to help you learn to use th
Component Builder to create components and connections. See the o
documentation in the Sybase\Application Integrator 3.0 program grou
for information on running the tutorials.
33

Working with the Component Builder

e
se

 in
ut
p all
h as
m

ect
Working with the Component Builder
The AI for CICS Component Builder lets you easily create Jaguar components
that invoke existing CICS programs. Like all AI Component Builders, the AI
for CICS Component Builder runs in Sybase Central, a system management
and design tool. Sybase Central is also used with Sybase servers such as Jaguar
and Adaptive Server Anywhere (ASA).

You use the AI for CICS Component Builder to perform the following tasks:

• Create, test, and edit connections

• Create and edit components

• Deploy components to Jaguar

This section covers the following topics:

• Starting the Component Builder

• Working with Project Files

Starting the Component Builder
To start the Component Builder, from the Windows Start menu, select AI
Component Builder from the Sybase\Application Integrator 3.0 program
group.

This starts Sybase Central and loads any AI Component Builders you hav
installed. The AI Component Builders appear in the tree view in the Syba
Central window.

Working with Project Files
Project files provide a way to store component and connection definitions
the Component Builder. Project files store definitions and information abo
logically-related components and connections. For example, you can grou
components created for a specific department into a single project file, suc
a Human Resources or Payroll file. Or, if you are creating components fro
CICS programs that reside in different CICS regions, you can save all
components and connections created for a specific region in a single proj
file.
34

CHAPTER 3 Working with the AI Component Builder

iew
roject
e +
The Component Builder assigns the .aip extension to new, untitled project
files. We recommend that you continue to use the .aip extension for each
project file you save.

This section covers these topics:

• Creating, Opening, and Closing Projects

• Viewing Project Contents

• Saving Project Files

Creating, Opening, and Closing Projects

To create a new project, right-click the Component Builder and click New
Project.

To open a project file, right-click the Component Builder and click Open
Project.

To close a project file, right-click the project and click Close.

Viewing Project Contents

Each project contains a collection of components and connections. These
objects are displayed hierarchically in the Sybase Central tree view. You v
the contents of a project by expanding the objects that appear beneath a p
in the tree view. To expand an object in the tree, you can either left-click th
button that appears next to the object, or double-click the object.

The following figure shows a project file named new_cics in the CICS
Component Builder.
35

Working with the Component Builder

t to
Figure 3-1: Expanded project file

In the new_cics project, the component named Calculator contains two
methods called multiply and divide. The connection associated with this
component is Sungard.

The right-hand window in Sybase Central window contains different views of
the object currently selected in the tree. The Details view displays children of
the object selected in the tree. Some objects include other views that provide
additional information. For example, when you select a component in the tree,
you can see both Details and Interface views for the component:

• The Details view displays the methods in the component.

• The Interface view displays the CORBA IDL (Interface Definition
Language) interface for the component.

Saving Project Files

To save your project, right-click on it and click Save. This saves the projec
a file, so you can use it again later.
36

CHAPTER 3 Working with the AI Component Builder

2:
Understanding AI Connections
An Application Integrator connection is a named set of properties that are used
to access a CICS program. Every deployed component is associated with a
connection definition by name.

A connection identifies how the component and its methods can locate the AI
for CICS server, which must be installed and configured in the CICS region
where the CICS program resides. (For information about installing AI for
CICS on the workstation and the mainframe, see the Enterprise Application
Studio Installation Guide.)

Connections are used in the Component Builder at design time, and in Jaguar
at run time. In the Component Builder, connections can be tested to verify end-
to-end connectivity. In Jaguar, connections are used by component methods to
invoke CICS programs.

You use the Component Builder to define connection properties, associate
them with components, and deploy them to Jaguar. Every component is
associated with exactly one connection.

This section covers the following topics:

• Determining Connectivity

• Connection Properties

• Testing Connections

• Connection Caching

• Connections and Deployed Components

Determining Connectivity
There are two ways to connect to the CICS region, as shown in Figure 3-

Figure 3-2: Gateway versus gateway-less connectivity
37

Understanding AI Connections

he

ect

m

• Gateway connectivity:

If you are using the SNA protocol to access the AI for CICS server,
provide connectivity from the Jaguar server to CICS through
DirectConnect TRS. For this connectivity method, you need to know t
TRS Service Name when prompted.

• Gateway-less connectivity:

If you are using TCP/IP to access the AI for CICS server, you can conn
directly to the CICS server from the Jaguar server.

Connection Properties
To create a connection, you must supply the following information in the
Component Builder:

• CICS user ID and password needed to access the target CICS progra

• Properties needed to connect to the target CICS program

The following table shows all of the requested connection properties:

Table 3-1: Connection properties

Dialog box Field Description

Create
Connection

Host name TCP/IP server name. Name of the machine,
either gateway or mainframe.

Port number TCP/IP port that the gateway or mainframe is
listening on.

Valid value is any that matches a listener on the
Host name.

TRS service
name

Name assigned to DirectConnect Transaction
Router Service.

Required for gateway connectivity.

User name Valid CICS user ID.

User
password

Password for CICS user ID.

General Name Name of connection.

Description Optional short description of the connection.

This description will appear in the Details area
of the project file tree view on the Sybase
Central window.
38

CHAPTER 3 Working with the AI Component Builder

ord,

e
u

t.
guar.
Testing Connections
The Component Builder allows you to test a connection to the target CICS
region where the AI for CICS server run time resides. This makes it easy to
verify that the region is running, and that you have defined the connection
correctly.

Common reasons that connection tests fail are:

• The network or CICS region is down.

• Invalid values, such as host name, port number, user name, or passw
were specified for the connection.

• AI run time (CICS) is not installed.

Note Because connectivity problems are difficult to identify at run time, w
recommend that you test connections in the Component Builder before yo
deploy components and methods that use them.

Connection Caching
AI components do not use Jaguar’s connection caching feature by defaul
Components can be configured to use the connection caching feature in Ja
See Chapter 4, “Jaguar and Application Issues,” for details.

Connectivity RPC name Name assigned to the RPC for the CICS run
time.

Code page Number that identifies a set of characters with
an encoding scheme that uniquely defines each
character.

Also called code set or character set. Click
Select to display a list of code page options.

Dialog box Field Description
39

Understanding AI Connections

rm
ure

the
Connections and Deployed Components
When you deploy a component into Jaguar, the Component Builder uses the
connection definition that was associated with the component in the
Component Builder.

The information for the component’s connection is sent to Jaguar in the fo
of a serialized file, which is located in the Jaguar installation directory struct
(in the java\classes\SybAIConnections directory). If you need to change
connection information for a component, you must edit the connection in
Component Builder, and then redeploy the component and connection.
40

CHAPTER 3 Working with the AI Component Builder

an
le

can
- or
nt

rite

u can
ent

ons

4.

gle
Understanding AI Components
AI for CICS components are Jaguar components that provide access to one or
more CICS programs. A component contains one method for each CICS
program it exposes, and each method invokes exactly one CICS program.

Every component is associated with exactly one connection. The choice of
connection determines which CICS programs the component’s methods c
invoke. All CICS programs exposed in a component must reside in a sing
CICS region.

After creating the component and its methods, the AI Component Builder
be used to automatically deploy it to Jaguar, where it is used to build LAN
Web-based applications. The result is that, using the component, the clie
application can access several existing CICS programs that read and/or w
mainframe data.

Once you have created a component and added one or more methods, yo
deploy the component to Jaguar, where it can then be used by Jaguar cli
applications or other Jaguar components.

The person responsible for using AI for CICS components to build applicati
should perform the steps of the component creation process.

The rest of this section covers the following topics:

• Component Properties

• Method Properties

• Viewing Method Information

Component Properties

Note Before you create a component, be sure you know how COBOL
datatypes map to Java datatypes. See “Supported Datatypes” on page 4

The Component Builder allows you to associate multiple methods with a sin
component.

For each component that you create, you must supply the following
information in the Component Builder:
41

Understanding AI Components
Table 3-2: Component properties

Method Properties
The Component Builder requests the following properties on the Method
Properties dialog box.

Table 3-3: Method properties

Tab Field Description

General Name Name used for the component when it is
deployed to Jaguar.

Java package
name

Components are implemented as Java classes.
Java package names are used to organize Java
classes hierarchically. Typically, Java package
names are in reverse Internet domain name
format (as in the example
com.xyzcorp.app_name, where app_name is the
name of the application you are building).

Note Java package names are not the same as
Jaguar package names.

Connection Connection Each component requires a connection. When
components are created in the Component
Builder, you can select an existing connection, or
create a new one.

Tab Field Description

General Name Name that Jaguar clients will use when
invoking the method.

Description Description of the method.
 An optional field.

Parameters:

Name Java name derived from the mapped COBOL
field.

Mode Defaults to inout. To edit, click the current
mode and select from the list.

Type Jaguar datatype of each mapped COBOL
field. To edit, click the current type and select
from the list. See “Supported Datatypes” on
page 44.

COMMAREA
Definition

Name of each field in the target COMMAREA
definition. This field is not editable.
42

CHAPTER 3 Working with the AI Component Builder

ou
Viewing Method Information
When you add a method to a component, you can select the method name and
click the following tabs for information:

• Details, which includes the name of each method in the component (if y
have added methods), the target name, and an optional description

• Interface, which shows the representation of this component using
CORBA IDL (Interface Definition Language)

Result Sets Name Name of the result set for the OCCURS clause
in the target COMMAREA definition.

Type Jaguar datatype that maps to the COBOL field.

 COMMAREA
Field

Name of the field in the COMMAREA of the
target COBOL program.

Target COBOL
Program

Name of the target COBOL program for this
method. This field is not editable.

COMMAREA Displays the COMMAREA for this method.
This field is not editable.

Tab Field Description
43

Supported Datatypes

e

Supported Datatypes
This section covers the following topics:

• COBOL FILLER and Group Level Items

• COBOL Datatype Support

• Additional Datatype Information

COBOL FILLER and Group Level Items
Fields declared as FILLER in the COBOL COMMAREA definition are not
displayed as fields in the component, and the corresponding storage is
allocated but inaccessible to the component user.

Also, AI for CICS only displays information about elementary fields in the
component. Group-level items are not displayed.

COBOL Datatype Support
The AI for CICS Component Builder supports the following datatypes in th
COMMAREA.

Table 3-4: Supported COBOL datatypes in the COMMAREA

Note The AI for CICS Component Builder does not support COBOL fields
defined as USAGE COMP-1, USAGE COMP-2, or PIC G.

COBOL
Datatype Picture Clause

Java
Datatype

Jaguar IDL
Datatype

 Character
Data

PIC X(n) or PIC A(n) java.lang.string string

Numeric
Display

PIC S9(n), or PIC
S9(n)V9(n)

See Table 3-6 on page 46.

Numeric
Binary

PIC S9(n) COMP SeeTable 3-6 on page 46.

Numeric
Packed

PIC S9(n) COMP-3, or
 PIC S9(n)V9(n) COMP-3

See Table 3-6 on page 46.
44

CHAPTER 3 Working with the AI Component Builder

n,
ar.

I
ing
client
 AI
n
he
age,
ield.

 the
:

h

 be
Additional Datatype Information
This section describes the default datatypes that AI for CICS maps based on the
COBOL datatype.

This section covers the following topics:

• Alphanumeric Datatypes

• Alphabetic Datatypes

• Numeric Datatypes

• Input and Output Parameter Information

When the Component Builder parses a COBOL COMMAREA data definitio
it maps the COBOL datatypes to datatypes used by AI for CICS and Jagu

In the Component Builder, you can change the datatype that the parser
determined to binary. When binary is selected as the Jaguar datatype, the A
Adapter does not perform conversion to or from the format of the underly
COBOL storage datatype. Instead, this field is treated as raw data that the
application programmer must interpret and format correctly. However, the
Adapter will throw an exception if the length of the byte array passed as a
input parameter exceeds the length of the underlying COBOL storage. If t
array length of an input parameter is less than the underlying COBOL stor
only the number of bytes in the array are placed into the storage for that f

Alphanumeric Datatypes

Alphanumeric datatypes (PICTURE X(n)) are subject to character set
conversion, such as ASCII to EBCDIC, using the code page indicated on
component’s associated connection definition. Keep the following in mind

• Input values shorter than the actual COBOL definition are padded wit
spaces at the end.

• Input values longer than the COBOL definition cause an exception to
thrown.

• Output values are exactly the same length as defined in the COBOL
definition.
45

Supported Datatypes

h

 be

s
ber
Alphabetic Datatypes

Alphabetic datatypes (PICTURE A(n)) are treated the same as alphanumeric
datatypes. AI for CICS does not verify that valid alphabetic characters are
stored in these fields.

Keep the following in mind:

• Input values shorter than the actual COBOL definition are padded wit
spaces at the end.

• Input values longer than the COBOL definition cause an exception to
thrown.

• Output values are exactly the same length as defined in the COBOL
definition.

Numeric Datatypes

AI for CICS supports numeric datatypes as follows:

Table 3-5: Numeric datatypes and COBOL USAGE clauses

As shown in Table 3-6, all formats of default and allowable Java datatype
depend on precision (total number of digits in PIC clause) and scale (num
of digits to the right of the decimal).

Table 3-6: Numeric datatype mappings according to precision and
scale

Numeric Datatype COBOL USAGE Clauses

Binary • COMP

• COMPUTATIONAL

• BINARY

Packed Decimal • COMP-3

• COMPUTATIONAL-3

• PACKED-DECIMAL

Zoned Decimal DISPLAY

Precision Scale Default Java Datatype
Jaguar IDL
Datatypes

1 - 4 0 short integer<16>

 5 - 9 0 int integer<32>

10 - 18 0 long integer<64>

any > 0 java.math.BigDecimal decimal
46

CHAPTER 3 Working with the AI Component Builder

n

e
ng

the
its.
Input and Output Parameter Information

Following are additional points to consider:

• If input parameters passed as BigDecimal have a scale or precision that is
greater than defined for the field in the COBOL definition, an exceptio
will be thrown.

• If input parameters passed as BigDecimal have a scale that is less than th
COBOL definition, the scale will be padded with zeros for the remaini
least significant digits.

• If input parameters have a precision less than the COBOL definition,
value will be padded with zeros for the remaining most significant dig

• Output parameters specified as datatype BigDecimal will have the same
precision and scale identified in the COBOL definition.
47

Understanding AI Component Deployment

e

er

log
Understanding AI Component Deployment
Once you have defined a component that has one or more methods, you can
deploy it to Jaguar, where it can then be used in Jaguar client applications.

This section covers the following topics:

• Understanding the Deployment Wizard

• Understanding Deployed Components in Jaguar

• Understanding Deployed Connections in Jaguar

Understanding the Deployment Wizard
The Component Builder provides a wizard that makes it easy to deploy
components. The wizard performs the following functions:

• Defines the component in Jaguar

• Copies the connection and Java source code for the component to th
Jaguar java\classes directory

• Compiles the Java source code for the component on the Jaguar serv

When you deploy a component, you must provide the information on the dia
boxes described in the following table:

Table 3-7: Information needed by the Deploy Components wizard

Wizard
Dialog Box Field Description

Jaguar
connection
information

User name Valid Jaguar user ID.

Password Valid password for Jaguar user ID.

Host name Name of the machine on which Jaguar is
running.

Note Be sure that Jaguar is running.

Port number Number of the port on which Jaguar is
listening.
48

CHAPTER 3 Working with the AI Component Builder
After you provide the information needed by the wizard, a progress window
appears and provides you with status as the components are deployed. If
deployment is not successful, use the messages that appear in the progress
window to troubleshoot errors.

Note For each Jaguar server you deploy components into, the first time you
deploy a component, a message indicates that the feature for deploying
components is not yet installed in the Jaguar server. Click OK to install this
feature.

Understanding Deployed Components in Jaguar
Each AI for CICS component built and deployed to Jaguar consists of two or
more Java classes that work with the AI for CICS Adapter, which allows those
CICS programs to be viewed in Jaguar as components.

The Adapter consists of a set of Application Integrator classes that are also
referred to as the Application Integrator run-time classes. Internally, the
Adapter provides access to CICS programs; it also provides security,
transaction control, datatype conversion, and error handling integration.

For each component that is deployed, AI for CICS creates (or modifies, if one
already exists) the following items on the Jaguar server:

• A Jaguar package (modified, if it already exists)

• A Jaguar component definition

• An IDL module (modified, if it already exists)

• An IDL interface

• Java source files for the component

Jaguar
package
information

Package name The package name currently selected for
this component. Enter a new name, accept
the selected name, or select a different
name from the Existing Packages field.

Existing packages The list of package names currently
available. Click a package name to select
the package.

Wizard
Dialog Box Field Description
49

Understanding AI Component Deployment

t to

ce

n

r

ns

dit
es,”
• Java class files for the component

• A file that contains the component’s connection

When components are deployed into Jaguar, the following steps occur:

1 The Jaguar package and IDL module are created only if they do not
already exist:

• If the package already exists, AI for CICS adds the new componen
the existing package.

• If the module already exists, AI for CICS adds the new IDL interfa
to the existing module.

2 The Application Integrator deployment feature creates implementatio
files and stores them in the <jaguar_install_dir>\java\classes directory.

3 The component connection is created in a file named connection_name.ser
in the Jaguar java\classes\SybAiConnections directory.

4 The Application Integrator component definition is added to the Jagua
repository in addition to standard Jaguar component properties.
Application Integrator components also include a collection of user-
defined Jaguar properties, which allow you to configure additional optio
for the component, such as debugging and connection caching.

If the deployed component properties need to be changed, you can e
them in Jaguar Manager. See Chapter 4, “Jaguar and Application Issu
for details.

Understanding Deployed Connections in Jaguar
When you deploy a component into Jaguar, the Component Builder also
deploys the connection that is associated with the component.
50

CHAPTER 3 Working with the AI Component Builder

hich

ent

ese
nt
ation

When a component is deployed into Jaguar, the information for the
component’s connection is sent to Jaguar in the form of a serialized file, w
is located in the Jaguar installation directory structure (in the
java\classes\SybAIConnections directory). If you need to change connection
information for a component, you must edit the connection in the Compon
Builder, and then redeploy the component and connection.

Note Sybase provides samples with the Application Integrator software. Th
samples include tutorials designed to help you learn to use the Compone
Builder to create components and connections. See the online document
in the Sybase\Application Integrator 3.0 program group for information on
running the tutorials.
51

Mapping CICS Components to AI Components

or
 you

the
uent

et

Mapping CICS Components to AI Components
This section contains information about the relationships between target CICS
programs and corresponding components in AI for CICS and Jaguar.

This section includes the following topics:

• Target CICS Programs and Method Names

• Result Sets and Method Return Value

• Parameter Information

• An Illustration of CICS Program-to-Component Mapping

Target CICS Programs and Method Names
Each Application Integrator component deployed to Jaguar contains one
more methods, each of which corresponds to a target CICS program. When
add a method to a component, the Component Builder uses the name of
target CICS program, with the first character in upper case and the subseq
characters in lower case.

Result Sets and Method Return Value
When the Component Builder parser detects an OCCURS clause in the CICS
program, it maps the OCCURS clause to a result set, establishing one result s
field for each field in the OCCURS clause in the COMMAREA definition.

The following table shows how the number of OCCURS clauses encountered
are mapped in Jaguar:

Table 3-8: Result sets and method return values

See Chapter 2, “Getting Ready to Use AI for CICS,” for restrictions on
OCCURS clauses.

Number of OCCURS Clauses Jaguar IDL Mapping

0 void

1 TabularResults::ResultSet

More than 1 TabularResults::ResultSets
52

CHAPTER 3 Working with the AI Component Builder

ds to

elds

cters
s.

CS
 the

ICS

field

e the

ms
Parameter Information
This section covers the following topics:

• Parameter Names

• Parameter Modes

Parameter Names

For each method in an AI for CICS component, each parameter correspon
the fields from the COMMAREA that are described by the COBOL data
definition. Parameter names are derived from the corresponding COBOL fi
and are altered to conform to valid Java field names. For example, the
Component Builder keeps the first character in upper case, makes chara
immediately following dashes (“-”) in upper case, and removes the dashe

You can also alter parameter names in the Component Builder.

Parameter Modes

Because the COBOL data definition does not indicate which fields the CI
program uses in input, input/output, or output, the Component Builder sets
defaults to inout for all fields. You can change the mode to in, out, or inout.

However, you must set the mode correctly for all fields based on how the C
program uses the field. For example:

• If the CICS program uses a field for a database query, or if it uses the
in a calculation but never alters the value, define the field in the
Component Builder with a mode of in.

• If a field contains a newly-calculated or derived value, define it in the
Component Builder as out.

• If a field used by the CICS program has a value that can change, defin
field as inout.

An Illustration of CICS Program-to-Component Mapping
The example in this section shows how AI for CICS maps COBOL progra
to components.
53

Mapping CICS Components to AI Components

y
ales.

 than
A CICS COBOL program called ZXR150R is designed to get a list of customer
names, addresses, and phone numbers of all customers for a specific account
representative, in descending order of total sales amount. The program caller
can limit the number of customers that the program will return, for example, up
to ten.

The following COBOL data definition describes the COMMAREA for the
CICS program:

01 COMMAREA.
 05 ACCOUNT-REP-ID PIC X(5).
 05 NUMBER-OF-CUSTOMERS PIC 9(4) COMP-3.
 05 ACCOUNT-REP-QUOTA PIC 9(8)V9(2) COMP-3.
 05 CUSTOMER-DATA OCCURS 1 TO 500 DEPENDING ON
 NUMBER-OF-CUSTOMERS.
 10 CUST-NAME PIC X(25).
 10 CUST-ADDR PIC X(25).
 10 CUST-CITY PIC X(15).
 10 CUST-STATE PIC C(2).
 10 CUST-ZIP PIC X(10).

The preceding data definition does not clearly indicate whether the parameters
are used for input, output, or both.

The Component Builder uses this definition to set the modes for the parameters
as follows:

Table 3-9: Parameter definitions

Assume that the logic for the CICS program is as follows:

• The ACCOUNT-REP-ID field is used to query for customers serviced b
that account rep, in descending order of the customers year-to-date s

• The NUMBER-OF-CUSTOMERS field will be used to limit the number of
customers.

• The data from the query populates the fields in the CUSTOMER-DATA
group item that contains the OCCURS clause.

• If the actual number of the account representative’s customers is less
the value in the NUMBER-OF-CUSTOMERS field, set NUMBER-OF-
CUSTOMERS to the actual number of customers.

Parameter Name Type Mode

accountRepId string inout

numberOfCustomers integer <16> inout

accountRepQuota decimal inout
54

CHAPTER 3 Working with the AI Component Builder

and

ICS

e

des of
m.

he
• Query the database to find this account representative’s sales quota
insert this value in the ACCOUNT-REP-QUOTA field.

• You may want to change the method name that is defaulted from the C
program (altered by AI for CICS to zxr150r) to getTopCustomerList,
which is more meaningful.

You must set parameter modes as follows:

• Because the CICS program only uses the ACCOUNT-REP-ID field to
query information and does not alter its value, change the mode of th
accountRepId parameter from inout to in.

• Because the caller can use the NUMBER-OF-CUSTOMERS field to
indicate the maximum number of customers to return, and the CICS
program itself can alter the field to contain a different value, allow the
mode of the numberOfCustomers parameter to remain as inout.

• Because the ACCOUNT-REP-QUOTA field is used exclusively to pass a
value back from the CICS program, change the mode of the
accountRepQuota parameter to out.

The Resulting Component Definition

If you customize the method name, parameter names, and parameter mo
this component as described, it will accurately represent the CICS progra

In Jaguar, this component will be called AccountRep (the same name you
assigned the component using the Component Builder), and it will have a
method named getTopCustomerList that returns a ResultSet. The parameters
for that method will be defined appropriately, based on their functions in t
program.
55

Mapping CICS Components to AI Components
56

rize
C H A P T E R 4 Jaguar and Application Issues

This chapter describes the characteristics of Application Integrator
components in Jaguar that affect programming client applications in
Jaguar. This chapter contains the following topics:

• AI Components in Jaguar

• Connections and Connection Caching

• Client Application Development

To help you understand this material, we recommend that you familia
yourself with the following Jaguar-related topics in the Jaguar CTS
Programmer’s Guide:

• Java components in Jaguar

• Transactions and component life cycles

• Connection management
57

AI Components in Jaguar

ce of
ed
lling
e

ne

t of a
ts to
yed

 can
open

tion
mon

ble,
AI Components in Jaguar
When the Component Builder deploys a component into Jaguar, a new
component is created in the specified Jaguar package using the Jaguar Java
component model. The new component’s interface (its methods and their
arguments) is described using CORBA IDL.

Application Integrator components are designed to take advantage of the
Jaguar instance pooling feature. This section covers the following topics:

• Instance Creation

• Instance Activation

• Method Invocation

• Instance Deactivation

• Instance Destruction

Instance Creation
Upon receiving a client request for a method, Jaguar creates a new instan
a component if no instances are available in the pool for reuse. If an unus
instance already exists in the pool, Jaguar can initialize that instance by ca
the activate method and allowing a client application to call a method on th
component. During component instantiation, a one-time initialization routi
retrieves component property information.

Instance Activation
Jaguar activates an Application Integrator component instance as a resul
client method invocation request. When activated, the component attemp
connect to its target server using the connection properties that you deplo
along with the component. Depending on its configuration, the component
obtain its connection from a connection cache defined in Jaguar, or it can
a connection directly to the server.

If an exception occurs during component activation, the exception informa
is held and returned on the first method call to that instance. The most com
reasons for exceptions during component activation result from problems
connecting to the server, such as invalid security values, server not availa
and invalid connection properties.
58

CHAPTER 4 Jaguar and Application Issues

rs

value

 it no
 its

ces:

ar

od
Method Invocation
When a client executes methods on a proxy object for an Application Integrator
component, Jaguar invokes the methods that correspond to a target COBOL
program. Method invocations prompt the Application Integrator component to
execute the COBOL program. The method’s input parameters (paramete
defined with the modes in or inout) are passed to the program. After the
program executes, any result sets are returned to the caller as the return
of the method call, and any output parameters (parameters defined as inout or
out) are returned to the caller.

Instance Deactivation
Jaguar deactivates each Application Integrator component instance when
longer needs to keep that instance associated with the client that caused
activation. During instance deactivation, the connection that was obtained
during activation is returned.

Instance Destruction
Jaguar destroys pooled component instances in the following circumstan

• A nonrecoverable error occurs during construction, activation, or
deactivation. (Messages about these errors are recorded in the Jagu
server log.)

• The Jaguar server shuts down.

• A component is refreshed.

• After the component method completes, if the client invoked the meth
using the Jaguar MASP feature.
59

Connections and Connection Caching

e

er

om

alid

t
Connections and Connection Caching
This section discusses how Application Integrator components use connections
to target servers, including the following topics:

• Component Properties: Connections and Security

• Acquiring and Disposing of Connections

• Defining Connection Caches in Jaguar Manager

• AI Component Properties in Jaguar Components

Component Properties: Connections and Security
When the Component Builder deploys a component into Jaguar, it sets th
following properties for the component. The following are properties that
relate to connection handling and security:

com.sybase.ai.connec
tion_name

This property is referred to as connection_name. It specifies the name of the
connection associated with the component.

com.sybase.ai.use_cli
ent_security

This property is referred to as use_client_security. It affects the user ID and
password that are used to obtain connections. Valid values are:

• false

A value of false tells the Application Integrator component to use the us
ID and password that were supplied in the connection object from the
Component Builder. The default value is false.

• true

A value of true tells the component to use the user ID and password fr
the client that invoked the component method. When the value is true, the
caller’s user ID and password are obtained from Jaguar and are
subsequently used to override the user ID and password from the
connection definition.

com.sybase.ai.use_co
nnection_cache

This property is referred to as use_connection_cache. It specifies how the
Application Integrator component acquires and disposes of connections. V
values are:

• false

A value of false (the default) tells the Application Integrator componen
to open and close connections to a server directly.
60

CHAPTER 4 Jaguar and Application Issues

 a

 Valid

the

n
The

will

es
is
d can

tor
tion

ICS

 on
tion
• true

A value of true tells the component to get and release connections from
Jaguar connection cache.

com.sybase.ai.connec
tion_cache_unavail_a
ction

This property is referred to as connection_cache_unavail_action. It controls the
action that Jaguar takes if there are no connections available in the cache.
values correspond to the possible values for the flag parameter on the
JCMCache.getConnection() method. (See the connection cache section of
Jaguar CTS Programmer’s Guide for a more detailed discussion). Valid values
are:

• nowait

Indicates that if no connections are available, the request results in a
exception (error condition) that is then propagated back to the caller.
default is nowait.

• force

Indicates that Jaguar should attempt to open a new connection (that
not be placed back in the cache after use).

• wait

Indicates that the component waits indefinitely until a connection becom
available. We do not recommend that you use this option because th
indefinite wait can cause component instances to tie up resources an
cause the client application to wait indefinitely.

Acquiring and Disposing of Connections
Connections created in the Component Builder give an Application Integra
component the information it needs to connect to a CICS server at execu
time. The CICS server is an Application Integrator-supplied CICS program
that Application Integrator components communicate with to execute a C
application program.

The process of acquiring and disposing of connections differs depending
whether the Application Integrator component is configured to use connec
caching.
61

Connections and Connection Caching

on
s

 uses

lar

e
to
che:

ect

s:

When connection
caching is not being
used:

• Acquiring connections refers to the process of opening a new connecti
directly to the CICS server. The Application Integrator component use
the values supplied in the connection definition with the name that
matches the connection_name property. These values include such
information as the TCP/IP host name, a port number, an Open
ServerConnect RPC name, and a Code Page.

• Disposing of connections refers to closing connections.

When connection
caching is being used:

• Acquiring connections refers to the process of retrieving a connection
from the Jaguar connection cache mechanism. When the Application
Integrator component needs to get a connection to the target server, it
the connection_name property to locate a Jaguar connection cache by
name.

• Disposing of connections refers to releasing a connection back to the
Jaguar connection cache for other components to use.

Defining Connection Caches in Jaguar Manager
Defining connection caches for Application Integrator components is simi
to defining them for other components that use JDBC connection caches.

You must set up connection cache definitions in Jaguar Manager using th
following procedure. In general, use the same information that was used
create the connection in the Component Builder. To define a connection ca

1 On the Driver tab of the Connection Cache Properties dialog box, sel
the JDBC 1.1 radio button.

2 Enter the JDBC driver class name in the DLL or Class Name as follow

com.sybase.ai.common.adapter.AIJagDriver

3 On the General tab:

a Set the Server Name property in the following format:

jdbc:sybase_ai:ai:<connection_name>

where <connection_name> is the connection name associated with
any AI for CICS components that should use this connection.

b Enter a valid user name and password.
62

CHAPTER 4 Jaguar and Application Issues
4 Click the Enable cache-by-name access check box to turn this property on
(it is off by default). This allows the Application Integrator component to
look up connection caches by name.

Note Setting the Jaguar Enable cache-by-name access property requires
Jaguar Administrator authority.

5 Restart the Jaguar server to make the changes to connection cache
definitions take effect.

Note Make sure the connection cache is installed in a running Jaguar
server before you use it in a component to connect to a target.

AI Component Properties in Jaguar Components
In addition to the properties that all Java-style Jaguar components have,
Application Integrator adds some properties to the component in the Jaguar
component repository. Application Integrator-specific properties begin with
the com.sybase.ai prefix. You must refresh the component in Jaguar Manager
for property changes to take effect.

To edit these properties in Jaguar Manager, use the All Properties tab on the
Component Properties dialog box. Click on the column heading once to sort the
properties alphabetically by name in ascending order; click on the column
heading again to sort the properties alphabetically in descending order.

Table 4-1: Component properties and where they are set

Do not modify any of the following component properties unless instructed to
do so by Sybase Technical Support:

• com.sybase.jaguar.component.files

Component property name Where property is set
com.sybase.ai.connection.name During Application Integrator

Component Builder deployment
com.sybase.ai.use_connection_cac
he

Jaguar Manager

com.sybase.ai.connection_cache_
unavail_action

Jaguar Manager

com.sybase.ai.use_client_security Jaguar Manager
com.sybase.ai.debug Jaguar Manager
63

Connections and Connection Caching

e

ged,

e
• com.sybase.jaguar.component.ids

• com.sybase.jaguar.component.java.classes

• com.sybase.jaguar.component.interfaces

• com.sybase.jaguar.component.java.class

• com.sybase.jaguar.component.type

• com.sybase.jaguar.component.name

• com.sybase.jaguar.component.bind.object

• com.sybase.jaguar.component.bind.thread

Component Execution Debugging

The com.sybase.ai.debug component property can be used to cause the
component to write detailed trace information to the Jaguar server log. Th
property can have a value of true to indicate that the component should write
trace information to the Jaguar server log. A value of false indicates that the
component should not write information to the log. The default value is false.

 Warning! Turning on debugging can cause a large amount of data to be log
which can adversely affect performance.

In general, the information produced by this logging is intended for Sybas
Technical Support to aid in problem determination.

To turn on component debugging:

1 In Jaguar Manager:

a Set the com.sybase.ai.debug property to a value of true.

b Refresh the component.

2 Run the component using your Jaguar client application.

3 Check the Jaguar server log to view the debug output produced by
component execution.
64

CHAPTER 4 Jaguar and Application Issues

rned
Client Application Development
If you are familiar with Jaguar, writing client applications that use Application
Integrator components is a straightforward task. Because an Application
Integrator component is defined in Jaguar as are other Java components, the
process of writing client applications will be similar to writing applications for
non-Application Integrator components.

For example, building client applications in Jaguar primarily consists of the
following steps:

1 Generate the stub classes.

2 Write the application logic. To write the application logic, you must do the
following:

a Instantiate proxy instances.

b Execute component methods.

c Process results.

d Handle errors.

3 Deploy the application.

See the Jaguar CTS Programmer’s Guide for details on how to perform
these tasks.

Note All IDL modules for Application Integrator components are defined with
the module property com.sybase.jaguar.module.java.package set to the Java
package name that was specified for this component in the Component Builder.
Therefore, this will be the Java package name for Java stubs generated for
Application Integrator components.

When you write client applications in Jaguar, be sure you understand the
following characteristics of Application Integrator components:

• Components can contain one or more methods.

• Each method corresponds to a target COBOL program.

• The input and output parameters for each method are mapped to
parameters in the program.

• The return type of the method is based on whether result sets are retu
from the program (in the form of an OCCURS clause). The number of
result sets maps to IDL statements as follows:
65

Client Application Development

 as a

t
• Exceptions caught by the component are propagated to the client stub
user-defined exception type of AIUserException. These exceptions
contain a single field called Message that contains the error message tex
for the exception.

Number of result sets IDL mapping

0 void

1 TabularResults::ResultSet

Variable (0, 1, or many) TabularResults::ResultSets
66

 and
r

jects
tifier.
nd

 that

,

 all
Glossary

adapter A set of Application Integrator classes that are also referred to as the
Application Integrator run-time classes. Internally, the Adapter provides
access to CICS programs; it also provides security, transaction control,
datatype conversion, and error handling integration.

applet An application program, written in the Java programming language, that
can be retrieved from a Web server and executed by a Web browser. A
reference to an applet appears in the markup for a Web page in the same
way that a reference to a graphics file appears: a browser retrieves an
applet in the same way that it retrieves a graphics file. For security
reasons, an applet’s access rights are limited in two ways: the applet
cannot access the file system of the client upon which it is executing;
the applet’s communication across the network is limited to the serve
from which it was downloaded.

builder See Component Builder.

byte code The output of a Java compiler. Byte code is suitable for interpretive
execution by a Java Virtual Machine.

catalog schema A persistent object in the database that consists of the collection of ob
associated with a particular schema name and user authorization iden
The objects include tables, views, domains, constraints, assertions, a
privileges.

catch Java code that begins error handling logic in exception handling. See also
throw.

child process In the UNIX operating system, a process started by a parent process
shares the resources of the parent process.

class In object-oriented programming, a model or template that can be
instantiated to create objects with a common definition and therefore
common properties, operations and behavior.

An object is an instance of a class.

code page An assignment of graphic characters and control function meanings to
code points.
67

guar
eturn

er

ns

and
code set Characters in a code page.

COMMAREA Common communications area where mainframe application logic and
presentation logic that are stored in separate regions can communicate with
each other.

Common Object
Request Broker
Architecture
(CORBA)

Specification produced by the Object Management Group (OMG) that presents
standards for various types of object request brokers. Implementation of
CORBA standards allows object request brokers from different software
vendors to interoperate.

component In Jaguar, an “application object” that consists of one or more methods. Ja
components typically execute business logic, access data sources, and r
results to the client. Clients (Java applications) create an instance of a
component and execute methods associated with that component.

Application Integrator creates a component that can contain one or more
methods for use in a client application.

Component Builder Application Integrator graphical design tool used to build component and
connection information into a component.

connection Network between two systems:

• For SNA, the path connects an LU on one machine to an LU on anoth
machine.

• For TCP/IP, the path connects TCP modules on separate machines.

In Application Integrator, the user creates a connection as part of the
component.

container Visual user-interface component that holds objects.

copybook Library of CICS code fragments that usually contain common data definitio
and file descriptions. Copybooks are language-specific.

datatype Characteristics of stored information on a computer.

deploy Act of sending components to target container, such as Jaguar CTS and
PowerDynamo.

deployment target Deployment container, such as Jaguar CTS and PowerDynamo.

design time Environment in which the Component Builder is used to build connections
components for deployment into Jaguar CTS. Compare with run time.

exception Abnormal condition, such as an unknown communications error.
68

execution time See run time.

host Mainframe or other machine on which a database, an application, or a program
resides. In TCP/IP, this is any system that is associated with at least one Internet
address. See also Transmission Control Protocol.

hypertext Way of presenting information online with connections (hypertext links)
between one piece of information and another.

import Process of moving a copybook from its data source into the Application
Integrator tool.

instance In object-oriented programming, an object created by instantiating a class.

instantiate In object-oriented programming, to represent a class abstraction with a
concrete instance of the class. A way to replicate a class file into several new
components.

Interface Definition
Language (IDL)

In CORBA, a declarative language that is used to describe object interfaces
without regard to object implementation.

Jaguar CTS Jaguar Component Transaction Server.

jar file File composed of other files, such as class files and serialized files, that acts as
a repository or library of classes.

Java An object-oriented programming language for portable interpretive code that
supports interaction among remote objects. Java was developed and specified
by Sun Microsystems, Inc.

JavaBeans The platform-independent component architecture for the Java programming
language. JavaBeans enables software developers to assemble pieces of Java
code in a drag-and-drop development environment.

Java Database
Connectivity (JDBC)

Application programming interface that has the same characteristics as Open
Database Connectivity (ODBC) but is specifically designed for use by Java
database applications. For databases that do not have a JDBC driver, JDBC
includes a JDBC-to-ODBC bridge.

JavaScript Scripting language that resembles Java and was developed by Netscape for use
with the Netscape browser.

Java Virtual Machine
(JVM)

An execution time environment for running Java programs. JVMs may be
stand alone or embedded in Web browsers, transaction servers, database
management systems, and so on.
69

jConnect Sybase JDBC driver that is 100% Java and can be used by applets. jConnect
can also be used with Sun and Microsoft Java virtual machines.

marshal To copy data into a form suitable for use by another object. Stubs perform
marshalling.

method In object-oriented programming, software that implements the behavior
specified by an operation.

null indicator A boolean value (true/false) that indicates whether the first parameter value of
a method is NULL.

object In object-oriented programming, a concrete realization of a class that consists
of data and the operations associated with that data.

object request
broker (ORB)

In object-oriented programming, software that serves as an intermediary by
transparently enabling objects to exchange requests and responses.

Open Database
Connectivity (ODBC)

A standard application programming (API) interface for accessing data in both
relational and nonrelational database management systems. Using this API,
database applications can access data stored in database management systems
on a variety of computers even if each database management system uses a
different data storage format and programming interface. ODBC is based on
the Call Level Interface specification of the X/Open SQL Access Group and
was developed by DEC, Lotus, Microsoft and Sybase.

Open ServerConnect Sybase product that provides capability for programmatic access to mainframe
data. It allows workstation-based clients to execute customer-written
mainframe transactions remotely.

package In Jaguar, a collection of components that work together to provide a service
or some aspect of an application’s business logic. Each package acts as a unit
of distribution, grouping together application resources for ease of deployment
and management.

package name In Application Integrator, name used to provide unique identifiers for
components and associate them with a specific piece of an application
program. In the absence of a package name, Application Integrator assigns a
default name.

partner certification
reports

Sybase publications that certify third-party query and development tools to
work with Sybase products.

port number In the Internet suite of protocols, the identifier for a logical connector between
an application entity and the transport service.
70

project file Files that store definitions and information about logically-related components
and connections.

proxy A local representation of a remote user object in a distributed application.

remote stored
procedure (RSP)

A customer-written CICS program that resides on the mainframe and
communicates with MainframeConnect for DB2/MVS-CICS.

result set Rows of data retrieved from the database when a SQL SELECT statement is
executed. The return value for a method call.

run time Instant at which a particular computer program executes.

In Application Integrator, the environment in which a client application tries to
invoke a component in Jaguar CTS. Synonymous with execution time.
Compare with design time.

scalable Pertaining to the capability of a system to adapt readily to a greater or lesser
intensity of use, volume, or demand.

schema Set of statements, expressed in a data definition language, that completely
describe the structure of a database.

server A functional unit that provides shared services to one or more clients or
workstations over a network.

skeleton A skeleton acts as the interface between the Jaguar run-time environment and
the user code that implements the method. Skeletons are compiled and linked
with each of the components, and at run time they enable Jaguar to locate and
invoke an appropriate method.

stateful In code set conversion, the interpretation of a byte depends on the bytes before
it.

In Application Integrator, component instances that remain dedicated to a
single client application while the connection to the server remains open until
the component is deactivated. Compare with stateless.

stateless Application Integrator component instances that are removed from the instance
pool and dedicated to a client application only for the duration of the method
call. Compare with stateful.

stub Small module called from an application that performs marshalling and
transfer of control to a larger body of related code.
71

In Jaguar, a stub is a Java class generated by Jaguar Manager and acts as a
proxy object for a Jaguar component. Compiled and linked with a Java client
application, a stub communicates with Jaguar to instantiate and invoke a
method on a component in the middle tier. Stubs make remote Jaguar
components appear local to the client.

Sybase Central A graphical user interface (GUI) that monitors, configures, and controls
databases and related products. Written in Java, it can run on any platform that
supports a Java Virtual Machine.

Systems Network
Architecture (SNA)

A network plan for transmitting information units through networks and
controlling network configuration and operation.

target Source that contains the data definitions used to create an Application
Integrator component.

throw Java code that deals with exception handling, specifically sending the
exception that triggers code for error handling. See also catch.

Transmission
Control Protocol
(TCP)

A communications protocol used in the Internet. TCP uses Internet Protocol
(IP) as the underlying protocol.

Transaction Router
Service (TRS)

DirectConnect program that accepts requests from workstation-based clients
and routes them to Open ServerConnect.

Web browser A client program that initiates requests to a Web server and displays the
information that the server returns.

Web server A server that is connected to the internet and is capable of serving Web pages.

wizard A series of dialog boxes within an application that guide a user through the
completion of a task.
72

Index
A
Accessing the COMMAREA 28
Acquiring connections in Jaguar

when not using connection caching 62
when using connection caching 62

Activation
exceptions 58
reasons for problems 58

Adapter 45
Adaptive Server Anywhere 12, 34
AI component deployment 33, 51
AI components

See also Components 39
as middle-tier components in Jaguar 16
basic steps to creating 19
characteristics in Jaguar 57, 65
deployed in Jaguar 49
deploying into Jaguar 48
description 12
how they map from the COMMAREA 28
in Jaguar 57, 58

AI connections
See also Connections 39
changing information in 51
description 12
when deployed in Jaguar 50

AI for CICS
architecture 12
general description 12
getting ready to use 23, 31
issues with Jaguar and client applications 57
overview 11, 21
steps in development process 18
tutorials 21
working with components 41
working with connections 37

Alphabetic datatypes 46
Alphanumeric datatypes 45
Applets
as Jaguar client applications 16
Application development process 18
Application issues 57, 66
Architecture

AI for CICS 12
multi-tier Jaguar environment 15

ASA. See Adaptive Server Anywhere 12
Authorization

Jaguar administrator 63

B
Basic steps

building a Web application 18
how AI for CICS maps from the COMMAREA 28

BigDecimal
input parameters 47
output parameters 47

Binary datatypes 45, 46
BINARY USAGE clause 46

C
Caching

connection 60
CICS programs

and method names 52
as CICS server 61
criteria 24
methods invoked by Jaguar 59
requirements 24
selecting for use with AI for CICS 24
use of COMMAREAs 27

CICS regions 34, 37, 39, 41
CICS run time 39
CICS server 38

connections at run time 61
Class name
73

Index
JDBC driver 62
Client applications

and deployed components 57
as applets 16
as installed applications 16
developing 65
interaction with Jaguar 15
interaction with Jaguar and AI component 16
issues 57, 66
on the Internet 12

Closing project files 35
COBOL datatypes

as mapped to Java and Jaguar IDL datatypes 44
unsupported 44

COBOL FILLER fields 44
Code page 62
COMMAREA field for methods 43
COMMAREAs

defining 26
FILLER fields 44
group level items 44
how CICS programs use them 27
importing from a copybook member 29
importing from a separate file 30
importing from COBOL source code 29
preparing to import 18
restrictions 24
worksheet 31

COMP USAGE clause 46
COMP-3 USAGE clause 46
Component Builder

basic tasks 34
deployment wizard 48
description 13
starting 34
working with 33, 55

Component name 42
Component Properties dialog box 63
Components

debugging 64
deploying into Jaguar 48
deployment 48, 51
description 41, 47
execution and debugging 64
in Jaguar 57
mapping from CICS to AI 52
74
properties 41
properties for connection and security 60
properties in Jaguar components 63

COMPUTATIONAL USAGE clause 46
Connection Cache Properties dialog box 62
Connection caches

defining in Jaguar Manager 62
Connection caching 39, 60, 64

acquiring and disposing of connections 61
connection_cache_unavail_action Jaguar property 61
connection_name Jaguar property 60
Connections

acquiring 62
and connection caching 60
and deployed components 40
as serialized files 51
deployed in Jaguar 50
description 37, 42
determining connectivity 37
disposing of 62
how handled in connection caching 60
properties 38
properties for deployed component 60
reasons for failure 39
required information 38
testing 39
to the CICS server 61

Connectivity
determining 37
gateway 38
gateway-less (with TRS) 38

CORBA IDL
as interface for new component 58
as method information 43

Creating
components 41
connections 37
instances in Jaguar 58
methods 41
project files 35

Criteria for CICS programs 24

D
Data definitions

Index
accessing for AI for CICS 28
importing to define a component 13
restrictions 24
worksheet 31

Datatype support
alphabetic 46
alphanumeric 45
numeric 46

Datatypes
COBOL 44, 47
Java default 46
mapping 45
numeric according to precision and scale 46

Deactivating instances in Jaguar 59
Debugging 64
Default Java datatypes 46
Defining connection caches in Jaguar Manager 62
Definitions

COMMAREA 26
Deployed components

and client applications 57
and connections 40

Deployed connections
in Jaguar 50

Deployment
components 48
components into Jaguar 49
connection information 40
connections into Jaguar 50
information needed for 48
issues in client applications and Jaguar 57
of AI components into Jaguar 48
progress window 49
using the Component Builder wizard 48

Descriptions
AI component 12
AI connection 12
AI for CICS 12
AI for CICS architecture 12
Component Builder 13
components 41
how Jaguar works with AI for CICS 16

Design time
architecture of AI for CISC 13

Destroying instances in Jaguar 59
Details view
in project file 36
method information 43

Determining connectivity 37
Developing client applications 65
DirectConnect for MVS 12
DISPLAY USAGE clause 46
Disposing of connections

when not using connection caching 62
when using connection caching 62

DLL 62
Domain name format 42
Drivers

specifying connection properties 62

E
EAServer. See Enterprise Application Server 12
Editing

component properties in Jaguar Manager 63
Enable cache-by-name property 63
Enterprise Application Server 12, 14
Error messages

in Jaguar server log 59
Examples

COMMAREA 26
how AI components map from the COMMAREA

28
how AI for CICS solves business problems 14
how CICS programs use the COMMAREA 27
mapping a CICS program to an AI component 53

Exceptions
during activation 58
when connections are unavailable 61

F
Failure

during component activation 58
File Transfer Protocol (FTP) 30

using to copy data definition files 29
Files

project 34
serialized in Jaguar 40

FTP utility 30
75

Index
Functionality
AI for CICS and Jaguar 15

G
Gateway connectivity 38
Gateway-less connectivity 38
Group level items in COMMAREAs 44

I
IDL

CORBA 58
modules 49
viewing interface 50

IDL modules 65
Importing

COMMAREAs to AI for CICS 28
data definitions 13

in mode 59
IND$FILE utility 30
inout mode 59
Input and output parameters 47
Instance

activation in Jaguar 58
creation in Jaguar 58
deactivation in Jaguar 59
destruction in Jaguar 59

Instance pooling 58, 59
Interface view

in project files 36
method information 43

invoke call 28
Invoking

methods 59
Issues

in client applications 57

J
Jaguar

Binary datatypes 45
client applications 13
76
connection_cache_unavail_action property 61
environment 15
functionality with AI components 16
functionality with components 15
issues 57, 66
MASP feature 59
package names 42
properties 63
refreshing components in 59, 63
server during instance destruction 59
server log 59, 64
use_client_security property 60
use_connection_cache property 60

Jaguar Manager
defining connection caches in 62
editing properties in 63

Jaguar properties
connection_name 60

Jaguar server
during instance activation 58

Java
default datatypes 46
how component is defined in Jaguar 65
implementation classes 19
package name of stubs generated for AI components

65
package names 42

JCMCache.getConnection() method 61
JDBC driver

class name 62

M
Mapping

an example of CICS program to AI component 53
CICS programs to AI components 52
IDL from number of result sets 66
numeric datatypes by precision and scale 46
parameter modes 53
parameter names 53
result sets and method return values 52
target CICS programs and method names 52

MASP feature in Jaguar 59
Method names

and target CICS programs 52

Index
Methods
creating 41
invocation in instance pooling 59
JCMCache.getConnection() 61
parameters 43
properties 42
return type 65
return value and result sets 52
viewing information 43

Middle-tier components
AI components in Jaguar 16
in Jaguar 15

N
Name of result set 43
Nested OCCURS clauses 24
Nonrecoverable errors 59
Numeric datatypes 46

mappings according to precision and scale 46

O
OCCURS clauses 24, 43, 65
Opening project files 35
out mode 59

P
Package names

Java 41
Packed Decimal datatypes 46
PACKED-DECIMAL USAGE clause 46
Parameters

input and output 47
input for methods 59
modes 53
names 53
output 47
output for methods 59

PIC G definitions 44
PowerDynamo 12
Precision and numeric datatypes 46
Problems
during component activation 58

Process flow
AI for CICS component development 19

Project files
closing 35
creating 35
Details view 36
Interface view 36
opening 35
saving 36
viewing contents 35

Properties
component 41
connection 38, 60
connection handling 60
connections and security in the deployed component

60
debug 64
for logging trace information 64
Jaguar component 63
method 42
security 60
where set for components 63

Proxies 12

R
REDEFINES clauses 27
Refreshing components in Jaguar 59, 63
Remote Procedure Call

name 62
Requirements for CICS programs 24
Restrictions for COMMAREAs 24
Result sets

and method return value 52
and OCCURS clauses 43

RPC. See Remote Procedure Call 62
Run time

and instance activation 58
and instance creation 58
and instance destruction 59
and Jaguar security 60
and method invocation 59
architecture of AI for CICS 13
77

Index
debugging component properties 64

S
Samples

AI tutorials 33
Saving project files 36
Scale and numeric datatypes 46
Security

properties for deployed component 60
Selecting a CICS program 24
Sending COMMAREAs to AI for CICS 28
Stubs

classes 65
generated for AI components 65

Supported datatypes 44, 47
alphabetic 46
alphanumeric 45
COBOL 44
numeric 46

Sybase Central 34

T
Testing connections 39
Trace information 64
Transaction Router Service 12

gateway connectivity 38
Troubleshooting

debugging 64
TRS. See Transaction Router Service 12
Tutorials

AI for CICS 33
where to find 21

U
USAGE clauses and numeric datatypes 46
USAGE COMP-1 definitions 44
USAGE COMP-2 definitions 44
use_client_security Jaguar property 60
use_connection_cache Jaguar property 60
Utilities
78
FTP 30
IND$FILE 30
used to transfer COMMAREAs 30

V
Viewing

method information 43
project contents 35

W
Web application

basic steps for building 18, 20
Wizards

deployment 48
functions in deployment 48

Worksheet for data definitions 31

Z
Zoned Decimal datatypes 46

Index
79

Index
80

Index
81

Index
82

Index
83

	About This Book
	Related Documentation
	EAStudio
	EAServer
	Jaguar CTS
	Open ServerConnect
	DirectConnect for MVS

	Style Conventions
	Syntax Conventions
	Sybase Professional Services

	CHAPTER 1 Understanding Application Integrator
	What Is AI for CICS?
	A Description of AI for CICS
	AI for CICS Architecture

	Why Use AI for CICS?
	Problem
	Solution

	Jaguar and AI for CICS Functionality
	How Jaguar Works
	When Jaguar Uses AI for CICS Components

	Basic Steps to Building a Web Application
	Step 1: Prepare the COMMAREA Definition
	Step 2: Create the Component
	Step 3: Deploy the Component
	Step 4: Use the Component

	Using the AI for CICS Tutorial

	CHAPTER 2 Getting Ready to Use AI for CICS
	Selecting a CICS Program
	CICS Program Requirements
	Data Definition Restrictions
	If Your CICS Program Does Not Meet All Criteria

	Understanding COMMAREAs
	Defining the COMMAREA
	How CICS Programs Use the COMMAREA
	How AI for CICS Components Map from the COMMAREA
	Making the COMMAREA Available to AI for CICS
	From COBOL Source Code
	From a Copybook Member
	From a Separate File

	AI for CICS Data Definition Worksheet

	CHAPTER 3 Working with the AI Component Builder
	Working with the Component Builder
	Starting the Component Builder
	Working with Project Files
	Creating, Opening, and Closing Projects
	Viewing Project Contents
	Saving Project Files

	Understanding AI Connections
	Determining Connectivity
	Connection Properties
	Testing Connections
	Connection Caching
	Connections and Deployed Components

	Understanding AI Components
	Component Properties
	Method Properties
	Viewing Method Information

	Supported Datatypes
	COBOL FILLER and Group Level Items
	COBOL Datatype Support
	Additional Datatype Information
	Alphanumeric Datatypes
	Alphabetic Datatypes
	Numeric Datatypes
	Input and Output Parameter Information

	Understanding AI Component Deployment
	Understanding the Deployment Wizard
	Understanding Deployed Components in Jaguar
	Understanding Deployed Connections in Jaguar

	Mapping CICS Components to AI Components
	Target CICS Programs and Method Names
	Result Sets and Method Return Value
	Parameter Information
	Parameter Names
	Parameter Modes

	An Illustration of CICS Program-to-Component Mapping
	The Resulting Component Definition

	CHAPTER 4 Jaguar and Application Issues
	AI Components in Jaguar
	Instance Creation
	Instance Activation
	Method Invocation
	Instance Deactivation
	Instance Destruction

	Connections and Connection Caching
	Component Properties: Connections and Security
	Acquiring and Disposing of Connections
	Defining Connection Caches in Jaguar Manager
	AI Component Properties in Jaguar Components
	Component Execution Debugging

	Client Application Development

	Glossary

